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From Search to Recommendation

“The Web is leaving the era of search and
entering one of discovery. What's the differencez¢

Search is what you do when you're looking for

something. Discovery is when something
wonderful that you didn't know existed, or didn't

know how tfo ask for, finds )/OU.” — CNN Money, "The race

to create a 'smart' Google



The value of recommendations

e Netflix; 2/3 of the movies watched are
recommended

e Google News: recommendations generate 38%
more click-throughs

e Amazon: 35% sales from recommendations

e Choicestream: 28% of the people would buy more
music if they found what they liked.



The "Recommender problem”

Estimate a utility function

to predict how
a user will ike an item.



The "Recommender problem”

C:.={users}
S:= {recommendable items}

u:= utility function, measures the usefulness of
ifem s to user c,

Uu:CXS—R
where R:= {recommended items}.

For each user ¢, we want to choose the items
s that maximize u.

c € (C s, =argmaz,u(c,s)



A good recommendation
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o m  isrelevant to the user: personalized




A good recommendation

e |s diverse:




A good recommendation

e Does not recommend items the user already
knows or would have found anyway.

e Expands the user's taste intfo neighboring areas.
' erend:p:ty Unsought fmdmg




Top k recommendations

Users take into account only few suggestions.
There is a need o do better on the top scoring
recommenddﬁems
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What workse

e Depends on the domain and particular problem

e Currently, the best approach is Collaborative Filtering.
e Other approaches can be combined to improve results

e What maftterse
® Data preprocessing: outlier removal, denoising, removal of
global effects

® “Smart” dimensionality reduction
e Combining methods



Collaborative Filtering

The task of predicting (filfering) user
preferences on new items by collecting

taste information from many users
(collaborative).

Challenges:
e many items fo choose from
e very few recommendations to propose
e few data per user
e Nno data for new user
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Memory-Based CF:
User-based CF & lItem-based CF



DR O e

Each user has expressed
an opinion for some
ifems:

® Explicit opinion:
rating score

® |mplicit: purchase
records or listen to
tracks



Example: User-based CF

) s | s Target (or Active)
user forwhom the

5 4 1 CF
5 2 recommendation

fask Is performed
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Example: User-based CF

2 4 | 5 1. |dentify set of
items rated by the
target user

0 13 [3=o o e




Example: User-based CF

1. ldentify set of
Items rated by
the target user

2. ldentify which
other users rated 1+
items in this set
(neighborhood
formation)




User-based Similarity

3. Compute how similar
each neighboris o the
target user (similarity
function)

4. |n case, select k most
similar neighbors




User-based CF

5. Predict ratings for the target user's unrated items
(prediction function)

6. Recommend to the farget user the top N products
based on the predicted ratings



User-based CF

e Target user u, ratings matrix Y

® Yv,i—rating by user v foritem i

e Similarity Pearson r correlation sim(u,v) between users u & v

Y ier.. Wi — Pu)(Yoi — )

\/ 2iety, Wi = 9u)* Lier,, Woi = Jo)°

e Predicted rating ¥" (u, %)

sim(u, v)

Jd) = Gt Ejely*ﬁéo Sim("’jv u)(yvj,i — ?;vj)
3 - JUu
el

0 |Sim(vj7u)|



Example: User-based CF
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Example: User-based CF
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Example: User-based CF
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Example: User-based CF

DEIPR-2 O e
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Example: User-based CF
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Example: Item-based CF
/’

Target item: @)’

2 4 | 5 Item for
which the CF
5 4 1 prediction
- , task is
performed.

0 13 [3=o o e




ltem-based CF

The basic steps:
e |dentfify set of users who rated the target item |

e |denftify which ofther items (neighbours) were
rated by the users sef

e Compute similarity between each
neighbour & target item (similarity function)

e |n case, select k most similar neighbours

e Predict ratfings for the target item (prediction
function)



'tem Based Similarity
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'tem Based Similarity

e Targetitem |

® Yu,j— rating of user u for |Tem'y average rafing for j.
g,

e JSimilarity sim(i,}) between items i and | (Pearson-

correlation) )
2ouers; Wui = Gi) (Wug — U5)

\/ZuEI” Yu,i y’l) ZuEIij (yU,j B gj)2

® Predictedrafing ¥y ( U, )

sim(1, j)

o Dy, g ST o) (g, — Ti.)
Y (u,4) = §; + ——
D vel, . 8T, Ju)l

Yux



Example: Item-based CF
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Example: Item-based CF
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Example: Item-based CF
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Example: Item-based CF
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Example: Item-based CF

sim(6,5) cannot
5 4 1 be calculated
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Example: Item-based CF
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'tem Similarity Computation

® Pearson r correlation-based Similarity
does not account for user rating biases

e Cosine-based Similarity

does not account for user rating biases
ZuEI Yu,ilYu,j

\/EuEI yu 5% ZuEI yu,g

e Adjusted Cosine Similarty

takes care of user rating biases as each pair in the co-rated
set corresponds to a different user.

2 ueti; Wi = Ju) Wu,i — Ju)

S v Wi = 002 e, Wy — )’

cos(t, 7)

sim(t, ) =




Performance Implications

e Bottleneck: Similarity computation.

Time complexity, highly time consuming with millions
of users & ifems in the database.
e TwoO-step process:

e “off-lline component” / “model”:
similarity computation, precomputed & stored.

e "on-line component™: prediction process.



TwoO-step process

|

Learning
Process

Offline

Decision
Process

Recommended
lfems

s

Online



Performance Implications

e User-based similarity is more dynamic.

Precomputing user
poor predictions.

e |tem-based similo

neighbourhood canlead to

Ity IS stafic.

We can precompute item neightourhood.

Online computatio

n of the predicted ratings.



Memory based CF

+ Requires minimal knowledge engineering efforts

+ Users and products are symbols without any internal
structure or characteristics

+ Produces good-enough results in most cases

- Requires a large number of explicit and reliable
“ratings”

- Requires standardized products: users should have
bought exactly the same product

- Assumes that prior behaviour determines current
behaviour without taking info account “contextual”
knowledge



Personalised vs Non-Personalised CF

e CFrecommendations are personalized: the prediction
IS based on the ratings expressed by similar users;
neighbours are different for each farget user

e A non-personalized collaborative-based
recommendation can be generated by averaging the
recommendations of ALL users

e How would the two approaches comparee



Personalised vs Non-Personalised CF

Data Set | users |items total density
Jester 48483 | 100 | 3519449 | 0,725

MovieLens | 6040 | 3952 | 1000209 | 0,041

EachMovie | 74424 | 1649 | 2811718 | 0,022

Mean Average Error Non Personalized:

MAE ,,=

Ei,jlvij

v

num.ratings

v; is the rafing of user i for product |
and v;is the average rating for
pProduct |



The Sparsity Problem

Typically large product sets & few user ratings
e.g. Amazon:
e |n a catalogue of 1 million books, the probabllity

that two users who bought 100 books each,
have a book in common is 0.01

e In a catalogue of 10 million books, the
probability that two users who bought 50 books
each, have a book in common is 0.0002

e CF must have a number of users ~ 10% of
the product catalogue size



The Sparsity Problem

Methods for dimensionality reduction

e  Maltrix Factorization
e SVD
e Clustering




Model-Based
Collaborative Filtering



Model Based CF Algorithms

Models are learned from the underlying data rather than
heuristics.

Models of user ratings (or purchases):
e (lustering (classification)

e Association rules

® Matrix Factorization

® Restricted Boltzmann Machines

e Other models:

® Bayesian network (probabilistic)
® Probabilistic Latent Semantic Analysis ...



Clustering

e Cluster customers into categories based
on preferences & past purchases

e Compute recommendations at the
cluster level:

all customers within a cluster receive the
same recommendations



Clustering

BOOK 1 BOOK 2 BOOK 3 BOOK 4 BOOK 5 BOOK 6

CUSTOMER A X X

CUSTOMER B X X X
CUSTOMER C X X

CUSTOMER D X X
CUSTOMERE X X

B, C&Dform 1 CLUSTER vs. A & E form another cluster.

e ( Typical » preferences for CLUSTER are:
e Book 2, very high
e Book 3, high
e Books b & 6, may be recommended




Clustering

BOOK1 BOOK2 BOOK3 BOOK4 BOOKS BOOK6
CUSTOMER A X X

CUSTOMERE X X




Clustering

+ |t can also be applied for selec

ng the k

most relevant neighboursina C
+ Faster: recommendations are p

- algorithm
er cluster

- less personalized: recommendations are

oer cluster vs. In CF they are per

user



Assoclation rules

Past purchases used to find relationships of
common purchases

CUSTOMER A

BOOK 1
X

BOOK 2

BOOK 3

BOOK 4
X

BOOK 5

BOOK é

CUSTOMER B

X

CUSTOMER C
CUSTOMER D
CUSTOMER E
CUSTOMER F

X

BOOK 1

BOOK 1

BOOK 3

BOOK 4

BOOK 2

BOOK 3
BOOK 4
BOOK 5
BOOK 6




Association rules

+ Fast fo implement

+ Fast to execute

+ Not much storage space required
+ Noft « individual » specific

+ Very successful in broad applications for large
populations, such as shelf layout in retail stores

- Noft suitable if preferences change rapidly

- Rules can be used only when enough data
validates them. False associations can arise



Maitrix Factorization

1L

0§D RO 5D B

e LD !:)“’TJ b €+

fiz = (Usx, M 5)

E(U,M) = L(y: , fi;) + QU,M



Loss Functions for MF

1

» Squared error loss: L(yi;, fis) = 5 (¥is = fis)”

» Mean Average Error:  L(yij fi.j) = |Yi,; — fisl

e Binary Hinge loss:  L(yi,s fij) = maz(0,1 - yi 5, fi5)



Learning: Stochastic Gradient
Descent

Loss function




